Roll No: \square

B TECH
 (SEM-VII) THEORY EXAMINATION 2020-21
 OPERATION RESEARCH

Time: 3 Hours
Total Marks: 70
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.
SECTION A

1. Attempt all questions in brief.
$2 \times 7=14$

a.	What are slack and surplus variables?
b.	What is linear programming?
c.	What are the different costs that are involved in the inventory problem?
d.	What are the basic characteristics of a queuing system?
e.	What are the assumptions made in the theory of games?
f.	Differentiate between individual and group replacement.
g.	What are the advantages and limitations of LP problem?

SECTION B

2. Attempt any three of the following:

| a. | Explain the scope of OR. |
| :--- | :--- | :--- | :--- |
| b. | The demand of an item is uniform, at a rate of 25 unit per month. The fixed cost is
 Rs.15 each time a production run is made. The production cost is Rs.1 per item and the |
| inventory carrying cost is Rs.0.30 per item per month. If the shortage cost is Rs. 1.50 | |
| per item per month, determine the frequency and size of the production run that is to | |
| be made. | |

SECTION C

3. Attempt any one part of the following:

(a)	Solve using Vogel's Approximation/Method and perform optimality Test using MODI method:					
		D1	D2	D3	D4	Supply
	O1	2	3	11	7	6
	O2	1	0	6	1	1
	O3		8	15	9	10
	Demand	7	5	3	2	17

(b) A barber shop has space to accommodate only 10 customers. He can serve only one person at a time. If a customer comes to his shop and finds it full, he goes to the next shop. Customers randomly arrive at an average rate $\lambda=10$ per hour and the berbe's service time is negative exponential with an average of $1 / \mu=5$ minutes per customer. Find P_{o} and P_{n}.

Roll No: \square
4. Attempt any one part of the following:
(a) Obtain the optimal strategies for both persons and the value of the game for zero-sum two-person game whose payoff matrix is given below:

3	2	4	0
2	4	4	2
4	2	4	0
0	4	0	8

(b) Determine an initial basic feasible solution and optimal solution to the transportation problem given in table:

From	To					IV
		A	13	II	III	Supply
	B	17	14	15	20	2000
	B	18	18	12	13	6000
Demand		3000	3000	4000	5000	

5. Attempt any one part of the following:
$7 \times 1=7$
(a) There are five jobs, each of which must go through the two machines A and B in the order AB. Processing times are given below.

Job	1	2	3	4	5
Machine A	5	1	9	3	3
Machine B	2	6	7	8	4

(b) A supermarket has two girls ringing up sales at the counters. If the service time for each customer is exponential with mean four minutes and if people arrive in a Poison fashion at the counter, at the rate of 10 per hour, then calculate, i) the probability of having to wait for service. ii) the expected percentage of idle time for each girl. iii) if a customer has to wait, find the expected length of his waiting time.
6. Attempt any one part of the following: $\quad 7 \times 1=7$
(a) Explain the steps in PERT method and write the formula in calculating project variance and estimated time.
(b) A manufacturer is offered two machines A and B. A is priced at Rs.50,000 and running costs are estimated at Rs. 8000 for each of the first five years, increasing by 2000 per year in the sixth and subsequent years. Machine B of the same capacity costs Rs. Rs.25,000 but will have running costs of Rs. 12000 per year for six years increasing by Rs. 2000 per year thereafter. If money is worth 10% per year, which machine should be purchased?
7. Attempt any one part of the following:
$7 \times 1=7$

(a)	$\begin{array}{l}\text { A paper mill produces } 2 \text { grades of paper namely } x \text { and } y . \text { Because of raw material } \\ \text { restrictions, it cannot produce more than } 400 \text { tons of grade } x \text { and } 300 \text { tons of grade } y \text { in } \\ \text { a week. There are } 160 \text { production hours in a week. It requires } 0.2 \text { hours and } 1.4 \text { hours } \\ \text { to produce a tone of product } \mathrm{x} \text { and } \mathrm{y} \text { respectively, with corresponding profits of Rs. } 200 \\ \text { and Rs. } 500 \text { per ton. Formulate the above LPP to maximize the profit using the } \\ \text { graphical method. }\end{array}$
(b)	$\begin{array}{l}\text { Solve by using simplex method, Maximize } \mathrm{Z}=\text { Max } \mathrm{Z}=4 \mathrm{X}_{1}+10 \mathrm{X}_{2} \text { Subject to } \\ 2 \mathrm{X}_{1}+\mathrm{X}_{2} \leq 102 \mathrm{X}_{1}+5 \mathrm{X}_{2} \leq 20 \\ 2 \mathrm{X}_{1}+3 \mathrm{X}_{2} \leq 18 \\ \mathrm{X}_{1}, \mathrm{X}_{2} \geq 0\end{array}$

