| Printed Page | e 1 of 2 |          |  |  |  |  |  |  |  | Sub Code: REC052 |  |  |  |  |  |  |  |
|--------------|----------|----------|--|--|--|--|--|--|--|------------------|--|--|--|--|--|--|--|
| Paper Id:    | 130502   | Roll No: |  |  |  |  |  |  |  |                  |  |  |  |  |  |  |  |

### B.TECH (SEM V) THEORY EXAMINATION 2019-20 COMPUTER ARCHITECTURE AND ORGANIZATION

Time: 3 Hours Total Marks: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

#### SECTION A

## 1. Attempt all questions in brief.

 $2 \times 7 = 14$ 

- a. A digital computer has a common bus system for 16 registers of 32 bits each. The bus is constructed with Multiplexers. What size of multiplexers is needed?
- b. What is a carehe memory?
- c. What is instruction cycle?
- d. Discuss floating point number representation.
- e. Explain concept of memory transfer.
- f. What is meant by synchronous and asynchronous communication?
- g. Describe magnetic disk?

### SECTION B

# 2. Attempt any three of the following:

 $7 \times 3 = 21$ 

- a. A computer employs RAM chips of 256 x 8 and ROM chips of 1024 x 8. The computer system needs 2K bytes of RAM, 4K bytes of ROM, and four interface units', each with four registers. A memory-mapped I/Configuration is used. The two highest-order bits of the address bus are assigned 00 for RAM, 01 for ROM, 10 for interface registers.
  - (i) How many RAM and ROM chips are needed?
  - (ii) Draw a memory-address map for the system.
  - (iii) Give the address range in hexadecimal for RAM, ROM, and interface.
- b. Describe the following organizations of cache memory.
  - (i). Associative mapping (ii). Direct Mapping (iii). Set associative mapping
- c. What are the advantages of assembly language? How is it different from high-level language?
- d. Discuss control word with suitable example.
- e. Explain DMA transfer in detail with the help of diagram.

### SECTION C

### 3. Attempt any one part of the following:

 $7 \times 1 = 7$ 

- (a) Discuss Booth's algorithm. Multiply (-7) and (3) using Booth's algorithm.
- (b) Design a digital circuits that perform four logic operations exclusive-OR exclusive-NOR, NOR and NAND. Use two selection variables. Show logic diagram of one typical stage?

### 4. Attempt any one part of the following:

 $7 \times 1 = 7$ 

- (a) Discuss stack organization. Explain the following in details.
  - (i) Register stack (ii) Memory stack
- (b) What is Virtual Memory? Why is it necessary to implement virtual memory? What is use of page replacement algorithm?

| Printed Page 2 of 2 |        |          |  |  | Sub Code: REC052 |  |  |  |  |  |  |  |  |  |  |
|---------------------|--------|----------|--|--|------------------|--|--|--|--|--|--|--|--|--|--|
| Paper Id:           | 130502 | Roll No: |  |  |                  |  |  |  |  |  |  |  |  |  |  |

5. Attempt any one part of the following:

 $7 \times 1 = 7$ 

- (a) Write a program to evaluate arithmetic expression X= (A B) \* (((C D) / F) / G) Using a general register computer with three, two, one & zero address instructions.
- (b) What are various addressing modes? Explain any five with help of suitable example.

6. Attempt any one part of the following:

 $7 \times 1 = 7$ 

- (a) Explain General Register Organization with the help of suitable diagram.
- (b) What is interrupt? What are the different types of interrupts?
- 7. Attempt any one part of the following:

 $7 \times 1 = 7$ 

- (a) Explain two ways for establishing priority of interrupt by multiple devices.
- (b) Write short notes of the followings:
  - 1. Isolated Vs memory mapped I/O
  - II. RISC architecture