Sub Code: NEE501

Roll No:

(SEM V) THEORY EXAMINATION 2017-18 ELEMENTS OF POWER SYSTEM

Time: 3 Hours

Notes: Attempt all Sections. Assume any missing data.

SECTION -A

- 1. Attempt all question in brief:
 - a) How does isolator differ from circuit breaker?
 - b) What is single line diagram of power system?
 - c) What are the components of transmission line?
 - d) What is transposition of transmission line?
 - e) Write advantages of bundled conductor.
 - f) Define the term Corona.
 - g) What is the failure of insulators?
 - h) Define Sag in transmission line.
 - i) What is general construction of cable?
 - j) What are the advantages of neutral grounding?

SECTION -B

2. Attempt any **three** parts of the following:

- (a) Find the ratio of volume of copper required to transmit a given power over a given distance by overhead system using (i) DC two wire system (ii) 3-phase 4-wire system.
- (b) Derive A, B, C and D parameters for nominal Π model of a medium transmission line and draw its Phasor diagram.
- (c) Explain the phenomenon of corona formation and factors affecting, reducing corona. What is visual critical voltage?
- (d) Why do you the vibrations get generated in conductors? How are they damped? Explain effect of wind and ice loading on the mechanical design of a line.
- (e) What are advantages of HV DC transmission? Discuss various types of HVDC links.

SECTION -C

- 3. Attempt any **one** parts of the following:
 - a) State and explain Kelvin's law for economic size of conductor. Discuss limitations. Show how Skin effect increases effective resistance of the conductor.
 - b) Determine the best current density in amperes/mm² for a three phase overhead line. The line is in use for 3600 hours per year and if the conductor costs Rs. 3.0 / kg. It has a specific resistance of $1.73 \times 10^{-8} \Omega$ -m and weighs 6200 kg / m³.cost of energy is 12 paise / unit. Interest and depreciation is 10 % of conductor cost.
- 4. Attempt any **one** parts of the following:
 - a) Derive an expression for the capacitance of a single phase overhead transmission line. What do you mean by self G.M.D. and mutual G.M.D.
 - b) A two conductor, single phase line operates at 60 Hz. The diameter of each conductor is 5 cm and is spaced 3 m apart: calculate (i) the capacitance of each conductor to neutral per Km (ii) line to line capacitance (iii) capacitive susceptance to neutral per km.

(10x3=30)

(10x1=10)

(10x1=10)

(2x10=20)

Total Marks: 100

Printed pages: 01 Paper Id: 2 0 3 1

5. Attempt any **one** parts of the following:

(10x1=10)

- a) Describe pin type, suspension type, and strain type insulators with net sketch.
- b) Explain the methods of equalizing the potential across the string insulator. And define string efficiency.
- 6. Attempt any **one** parts of the following:
 - a) Explain catenary method for the calculation of sag and tension in transmission line. An overhead line has a span of 200 metres, the line conductor weighs 0.7 kg per meter. Calculate the maximum sag if allowable tension in the line is 1,400 kg. Prove formula used.
 - b) What is grading of cable? Why is it necessary? Explain Capacitance grading with suitable circuit Diagram.
- 7. Attempt any **one** parts of the following:
 - a) What are earthing and neutral grounding? Discuss different methods of neutral grounding with net sketch. Also give advantages.
 - b) Describe the various conductor configurations and choice of voltage, number of circuits for EHV Transmission lines. Make Economic comparison of EHV-AC & HVDC system.

(10x1=10)

(10x1=10)