

Roll No:

B TECH

(SEM V) THEORY EXAMINATION 2017-18 DESIGN OF CONCRETE STRUCTURES -I
Time: 3 Hours
Total Marks: 100
Notes: Attempt all Sections. Assume any missing data.
SECTION A

1. Attempt all questions in brief. $2 \times 10=20$
a) What is modular ratio?
b) Determine the modular ratio of M20 grade concrete.
c) What is effective depth in a beam section?
d) What is minimum grade of concrete for general reinforced concrete work recommended by the IS code-456:2000.
e) What is determined in slump cone test?
f) What is neutral axis?
g) What is effective cover?
h) What is lever arm?
i) What is creep of concrete?
j) What is shrinkage of concrete?

SECTION B

2. Attempt any three of the following:
$10 \times 3=30$
a) Write short note on water-cement ratio.
b) Write assumption made in working stress method.
c) What are the over reinforced section and under reinforced section.
d) Write formula to determine the moment of resistance of over reinforced section and under reinforced section. With diagram of section
e) What is critical section and critical neutral axis?

SECTION C

3. Attempt any one part of the following
$10 \times 1=10$
a) Crass section of a singly reinforced concrete beam is 300 mm wide and 500 mm deep. To centre of reinforcement which consist of 4 bars of 16 mm diameter? If stresses in concrete and steel are not exceed $7 \mathrm{~N} / \mathrm{mm}^{2}$ and $140 \mathrm{~N} / \mathrm{mm}^{2}$. respectively. Determine the moment of resistance of beam. Take $\mathrm{m}=13.33$.
b) A singly reinforced concrete beam in 300 mm wide and 450 mm deep to the centre of reinforcement which consists of 4 bars of 16 mm diameter. If safe stress in concrete and steel are $7 \mathrm{~N} / \mathrm{mm}^{2}$ and $230 \mathrm{~N} / \mathrm{mm}^{2}$. Respectively. Find moment of resistance of section. Take $\mathrm{m}=13.33$.
4. Attempt any one part of the following: $10 \times 1=10$
a) A singly reinforced rectangular beam 350 mm wide has a span of 6.25 m and carries a load of $16.3 \mathrm{KN} / \mathrm{m}$. if stresses in concrete and steel shall not exceed $7 \mathrm{~N} / \mathrm{mm}^{2}$ and $230 \mathrm{~N} / \mathrm{mm}^{2}$. Find the effective depth and area of tensile reinforcement. Take $\mathrm{m}=13.33$.
b) A doubly reinforced rectangular beam is 300 mm wide and 500 mm deep to centre of tension steel. It is reinforced with 4 bars of 18 mm dia. as compressive steel at an effective cover of 40 mm and with 4 bars of 20 mm dia. as tensile steel. If stresses in concrete and steel are not to exceed $7 \mathrm{~N} / \mathrm{mm}^{2}$ and $230 \mathrm{~N} / \mathrm{mm}^{2}$.respectively. Find moment of resistance of section. Take $\mathrm{m}=13.33$.
5. Attempt any one part of the following:
a) A beam of reinforced concrete is 300 mm wide and 450 mm deep to centre of tension steel. It is reinforced with 4 bars of 16 mm dia. as compressive steel and 4 bars of 25 mm dia. as tensile steel. Determine the moment of resistance of section. Cover to centre of compressions steel $=50 \mathrm{~m}$ use M20 concrete and Fe415 steel Take m=13.33.
b) What is meant by segregations and bleeding of concrete?
6. Attempt any one part of the following:
$10 \times 1=10$
a) A singly reinforced beam 250 mm wide is 400 mm deep to the centre of tensile reinforcement .determine the limiting moment of resistance of beam section and limiting area of reinforcement. use M20 concrete and Fe 250 steel
b) A beam of rectangular section 300 mm wide and 500 mm effective depth is provided with 4 bars of 18 mm dia. as tensile steel. find depth of neutral axis use M20 concrete and Fe250 steel
7. Attempt any one part of the following:
$10 \times 1=10$
a) A T beam of flange width 1400 mm , flange thickness 100 mm , rib width 300 mm and effective depth 500 mm has to be designed as a balanced section. Find the reinforcement required and limiting moment of resistance. use M20 concrete and Fe250 steel
b) A reinforced concrete column is $450 \mathrm{~mm} \times 400 \mathrm{~mm}$ and has to carry a factored load of 1800 KN . Length of column is 2 m .find area of reinforcement required. Use M20 concrete and Fe250 steel.
