(Following Paper ID and Roll No. to be filled in your Answer Books) Paper ID: 131401 Roll No.

B.TECH.

Theory Examination (Semester-IV) 2015-16

ELECTRONICS CIRCUITS

Time: 3 Hours Max. Marks: 100

Note: Attempt all Sections.

Section-A

- 1. This question consist of short answer questions. Attempt all parts. All parts carry equal marks. $(2\times10=20)$
 - (a) What is Op-amp? Give its equivalent circuit.
 - (b) For NMOS transistor, write the drain current expression for all its region.
 - (c) Draw a high frequency T model of n-channel MOSFET incorporating output resistance.

- (d) Draw the circuit diagram for CB amplifier.
- (e) Calculate β and α for a transistor if emitter current is 10mA and collector current is 9mA.
- (f) Define input offset voltage of MOS differential pair.
- (g) Explain why voltage divider biasing is preferred.
- (h) Define Unity gain frequency.
- (i) Draw a large-signal equivalent circuit model NPN transistor, incorporating the output resistance.
- (j) Give the Barkhausan conditions to obtain sustained oscillations.

Section-B

- 2. Attempt any FIVE questions. All questions carry equal marks. $[10 \times 5 = 50]$
 - (a) (i) Define and give the significance of Slew rate and CMRR. For an op-amp having a slew rate of 60 V/ µs, what is the highest frequency at which a 20V

(2) P.T.O.

peak to peak sine wave can be produced at the output?

- (ii) Describe the characteristics of an Op-amp. Draw the circuit diagram of difference amplifier using opamp and calculate the differential gain (A_d) , common mode gain (A_{cm}) and differential input resistance (R_{id}) .
- (b) (i) Describe classification of output stage power amplifier.Describe the methods of biasing for class AB power amplifier.
 - (ii) What do you mean by cross over distortion.Describe how can it be overcome.
- (c) Describe the construction and operation of N-channel enhancement MOSFET. Describe the role of substrate (the body effect) in MOSFET.
- (d) Draw the high frequency equivalent circuit model for the MOSFET and list all MOSFET internal Capacitances.
- (e) (i) Give the circuit for CC amplifier and calculate R_{in} and R_{out} for the CC amplifier.

(3) P.T.O.

- (ii) Draw the circuit diagram of CB amplifier and calculate expression for short-circuit current gain with T-model.
- (f) (i) Discuss the various internal capacitances for BJT. A particular small geometry BJT has $f_{_T}$ of 5 GHz and $C_{_{\mu}}$ = 1pF when opertated at $I_{_{\rm C}}$ = 0.5mA. What is $C_{_{\pi}}$ in this situation? Also find $g_{_{\rm m}}$. For β = 150, find $r_{_{\pi}}$ and $f_{_{\beta}}$.
 - (ii) Draw the circuit diagram of a Wien-bridge oscillator and derive an expression for the frequency of oscillations.
- (g) (i) Explain the operation of MOS differential pair with differential input voltage. Also calculate the range of input differential signals.
 - (ii) For the active loaded BJT differential amplifier let I=0.8mA, $V_A=100V$ and $\beta=160$. Find G_m , R_o , A_d and R_{id} .
- (h) (i) Design a series shunt feedback amplifier and derive expressions for A_f , R_{of} and R_{if} .
 - (ii) For the Colpitt's oscillator, derive an expression for the frequency of oscillation.

(4) P.T.O.

Section-C

Attempt any TWO questions. Each question carry equal marks. $(15\times2=30)$

- (a) Explain the effect of finite open loop gain and bandwidth on the circuit performance. Calculate the frequency response of closed loop inverting amplifier.
 - (b) Explain the working of BJT as an amplifier and as a switch with the help of neat diagram and necessary equations. Also calculate the amplifier gain.
- (a) Discuss a common-source amplifier, draw its ac equivalent circuit and obtain expression for its terminal characteristics.
 - (b) Describe the operation of class B push-pull power amplifier giving its circuit, also obtain its efficiency.
- (a) Draw the NMOS differential amplifier with a commonmode input signal and calculate the common Mode Gain and CMRR. Also explain the effect of R_D mismatch on CMRR.

(b) Explain the merits and demerits of negative feedback.
Also explain in brief the various topologies used in negative feedback.

(6) P.T.O.