

Time: 3 Hours

				Sub		0	302
Roll No:							

Printed Page: 1 of 2

Total Marks: 100

BTECH (SEM III) THEORY EXAMINATION 2020-21 **DIGITAL SYSTEM DESIGN**

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

Q no.	Question	Marks	CO
a.	Construct full adder using logic gates.	2	
b.	What is the concept of "setup" and "Hold" time?	2	
c.	What is difference between flip flop and latches?	2	
d.	What is difference between "Ripple Carry Adder" and Carry Look-ahead Geneartor?	2	
e.	How many flip flops are needed to implement a 32 bit register?	2	
f.	What is barrel shifter?	2	
g.	Which gates are called universal gates and why?	2	
h.	Differentiate between combinational logic circuit and sequential circuits?	2	
i.	Convert binary code(00011011) to gray code.	2	
j.	Implement a 4:1 multiplexer using 2:1 multiplexer.	2	XV
	SECTION B	(2).	,
2.	Attempt any three of the following:		
Q no.	Question	Marks	CO
a.	Convert the following	10	

2. Attempt any three of the following:

Q no.	Question	Marks	CO
a.	Convert the following	10	
	i. Hexadecimal equivalent of the decimal number 256		
	ii. Decimal equivalent of (123)9		
	iii. 378.93 ₁₀ to octal		
	iv. Convert A3BH and 2F3H into binary.		
b.	Simplify using k-map to obtain a minimum POS expression:	10	
	(A'+B'+C+D)(A+B'+C+D)(A+B+C'+D")(A'+B+C'+D')(A+B+C'+D)		
c.	State and Prove Demorgan's theorem.	10	
d.	For the clocked JK flip-flop write the state table, draw the state diagram	10	
	and the state equation.		
e.	Design a BCD adder using two 4 bit addresses.	10	

SECTION C

3. Attempt any one part of the following:

Q no.	Question	Marks	СО
a.	With the help of a neat diagram, explain the working of a two-input TTL NAND gate	10	
b.	With the help of a neat diagram, explain the working of any two I. a CMOS inverter, II. a two input CMOS NAND gate III. a two input CMOS NOR gate	10	

					Pri	ntec	l Pa	ge: 2	of 2	,
				Sub	ject	Cod	le: ŀ	KEC.	302	
Roll No:										

4. Attempt any *one* part of the following:

Q no.	Question	Marks	CO
a.	Define the following terms	10	
	I. threshold voltage		
	II. II. propagation delay		
	III. III. power dissipation		
	IV. IV. fan-in		
	V. V. fan-out		
b.	Discuss Mealy and Moore FSM. What do you mean by excitation table?	10	

5. Attempt any *one* part of the following:

Q no.	Question	Marks	CO
a.	Explain the operation of FLASH ADC.	10	
b.	Explain the operation of successive approximation ADC. Discuss it merits and demerits.	10	

6. Attempt any *one* part of the following:

Q no.	Question	Marks	CO.
a.	Design a sequential circuit with two flip flops, A & B and one input x. when x=0, the state of the circuit remains the same when x=1 the circuit passes through the state transitions from 00 to 01 to 11 to 10 back to 00 & repeat.	.6.	*
b.	Explain 4bit Johnson counter with circuit diagram and waveforms.	10	

7. Attempt any *one* part of the following:

Q no.	Question	Marks	CO
a.	Design and implement a synchronous 3-bit up/down counter using JK flip-flops.	10	
b.	With a neat diagram explain the operation of R-2R DAC.	10	
	22.Mai.201		