Printed Page 1 of 2

Paper Id: 130322

Roll No:						

B. TECH. (SEM-III) THEORY EXAMINATION 2019-20 DIGITAL SYSTEM DESIGN

Time: 3 Hours Total Marks: 100

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

Qno.	Question	Marks	CO
a.	The solution to the quadratic equation $k^2-11k+22=0$ are $x=3$ and $x=1$	2	1
	6. What is the base of the number system?		
b.	Simplify the expression F (A, B, C, D) = $ACD + \overline{A}B + \overline{D}$ by K-Map.	2	1
c.	Construct half subtractor using logic gates.	2	2
d.	Implement a 4:1 multiplexer using 2:1 multiplexer.	2	2
e.	What do you mean by race around condition in JK Flip Flop?	2	3
f.	Distinguish between Leach and Flip Flop.	2	3
g.	What is logic family? Give the classification of logic families in brief.	2	4
h.	Describe figure of merit & noise immunity of TTL & CMOS ICs.	2	4
i.	What are the advantages and disadvantages of flash type ADC?	2	5
j.	The basic step of a 9-bit DAC is 10.3 mV. If 000000000 represents	2	5
	0Volts, what is the output for an input of 101101111?		1

SECTION B

2. Attempt any three of the following:

 $3 \times 10 = 30$

Qno.	Question	Marks	CO
a.	Design an excess-3 to BCD code converter.	10	1
b.	Implement a full adder by using 8:1 multiplexer.	10	2
c.	Design a sequential circuit with two Flip Flops, A & B and one input x. When x=0, the State of the circuit remains the same when x=1 the circuit passes through the state transitions from 00 to 01 to 11 to 10 back to 00 & repeat.	10	3
d.	Compare TTL and CMOS logic families and also draw CMOS NOR gate.	10	4
e.	Explain the operation of successive approximation ADC. Discuss it merits and demerits.	10	5

SECTION C

3. Attempt any *one* part of the following:

 $1 \times 10 = 10$

Qno.	Question	Marks	CO
a.	Minimize the logic function using Quine-McCluskey Method	10	1
	$F(A, B, C, D, E) = \sum m(8,9,10,11,13,15,16,18,21,24,25,26,27,30,31)$		
b.	Simplify the logic expression using K-Map $F(A,B,C,D,E,F)$ =	10	1
	$\sum m(0,5,7,8,9,12,13,23,24,25,28,29,37,40,42,44,46,55,56,57,60,61)$		

Paper Id: 130322

Roll No:		i								1 1	•
KOH NO:	ì		l		1	1				i 1	
			1	1	4		ı				

4. Attempt any one part of the following:

1	X	10) =	10
---	---	----	-----	----

Qno.	Question	Marks	CO
a.	Design a 4-bit parallel binary Adder/Subtractor circuit.	10	2
b.	Design a 4-bit comparator circuit using logic gates.	10	2

5. Attempt any one part of the following:

$1 \times 10 = 10$

Qno.	Question	Marks	CO
a.	Discuss Mealy and Moore FSM. What do you mean by excitation table?	10	3
b.	For the given state diagram design the circuit using T flip flop	10	3
	0/0 1/1 010 1/1 1/1 1/1 1/1 1/1 1/1 1/1		

6. Attempt any one part of the following:

$1 \times 10 = 10$

Qno.	Question	Marks	CO
a.	Draw three input standard TTL NAND gate circuit and explain its	10	4
b.	operation. Implement the following function using PLA	10	4
	$F_1 = \sum m(0,3,4,7)$		
	$F_2 = \sum m(1,2,5,7)$		

7. Attempt any one part of the following:

$1 \times 10 = 10$

Qno.	Question	Marks	CO
a.	With a neat diagram explain the operation of R-2R DAC.	10	5
b.	With a neat sketch explain the operation of Flash ADC.	10	5