Total Marks: 70

 $2 \ge 7 = 14$

Paper ID: 9019

B.Tech. (SEM III) THEORY EXAMINATION 2017-18 **Mathematics** -III

Time: 3 Hours

Note: 1. Attempt all Sections. If require any missing data; then choose suitably. 2. Any special paper specific instruction.

SECTION A

1. Attempt *all* questions in brief.

a. Define analytic function with an example.

Roll No.

- b. Define the Binomial distribution with mean and variance.
- c. Write the normal equation for the curve $y = \frac{a}{x} + bx$ d. Give comparison between Regulafalsi method and Newton Raphson method
- e. Write the relation between nth divided difference and nth forward difference.
- f. What do you mean by initial value problem
- g. Find $Z^{-1}\left(\frac{5}{5z-1}\right)$

SECTION B

2. Attempt any three of the following:

- Give an example of a function in which Cauchy Riemann Equations are satisfied yet a. the function is not analytic at the origin. Justify your answer.
- Find the measure of Sskewness and kutosis based on moments for the followi b. distribution and draw your conclusion

Marks	5-15	15-25	25-35	35-45	45-55		
No.ofstudents	1	3	5	7	4		ŀ

Decompose $A = \begin{bmatrix} 5 & -2 & 1 \\ 7 & 1 & -5 \\ 3 & 7 & 4 \end{bmatrix}$ in the form LU, where L is lower c.

triangular matrix and U is upper triangular matrix and hence solve the system of equations:

$$5x - 2y + z = 4$$

$$7x + y - 5z = 8$$

$$3x + 7y + 4z = 10.$$

- Express the function $f(x) = \begin{cases} 1 \text{ when } |x| \le 1 \\ 0 \text{ when } |x| > 1' \end{cases}$ as a Fourier Integral. d. Hence evaluate $\int_0^\infty \frac{\sin\lambda\cos\lambda x}{\lambda} d\lambda$.
- Given the initial value problem $\frac{dy}{dx} = x^3 y^3$, y(0) = 1. e. Find the numerical solution of differential equation at x = 0.6 with h = 0.2 by using Runge-Kutta method of Fourth order.

 $7 \ge 3 = 21$

SECTION C

3. Attempt any *one* part of the following:

- (a) Evaluate the integration: $\int_0^{\pi} \sin^4 \theta d\theta$.
- (b) State and prove the Cauchy Integral formula. Also evaluate $\int_C \frac{1}{(z^2+4)^2} dz = \frac{\pi}{16}$, where C is the circle |z i| = 2,

4. Attempt any *one* part of the following:

- (a) Find Fourier cosine transform of $\frac{1}{1+x^2}$ and hence find Fourier sine transform of $\frac{x}{1+x^2}$.
- (b) Find the inverse Z-transform of F(z), where F(z) is given by (i) $\frac{z}{(z+2)(z+3)}$ (ii) $\frac{7z-11z^2}{(z-1)(z-2)(z+3)}$.

5. Attempt any *one* part of the following:

- (a) In a partially distributed laboratory record of an analysis of a correlation data, the following result are legible:
 Variance of x = 9
 Regression equation: 8x 10y = 66 = 0, 40x 18y = 214.
 What were (a) the mean of x and y. (b) the standard deviation of y and the
 - coefficient of *x* and *y*:

Attempt any *one* part of the following:

6.

(b) Find the mean and variance of normal distribution.

7 x 1 = 7

 $7 \ge 1 = 7$

- (a) Find the real root of the equation $x^3 2x + 5 = 0$ by method of False positic correct to three decimal places.
- (b) State and prove the Lagrange interpolation formula. Find the interpolating polynomial by By Lagrange interpolation formula for the given data

x	5	6	9	11
У	12	13	14	16

7. Attempt any *one* part of the following:

- (a) Apply Simpson's 3/8 th rule to obtain approximate value of (i) $\int_0^{\pi/2} e^{\sin x} dx$ (ii) $\int_0^{0.3} (2x x^2)^{1/2} dx$ using Simpson's rule with 6 interval.
- (b) Find x for which y is maximum and find the max value of y

x	1.2	1.3	1.4	1.5	1.6
У	0.9320	0.9636	0.9855	0.9975	0.9996

7 x 1 = 7

 $7 \ge 1 = 7$

7 x 1 = 7