Printed Pages: 6	4	AS-303
(Following Paper II	D and Roll No. to be Answer Book)	filled in your
Paper ID :199312	Roll No.	IIIII

B.Tech.

(SEM. III) THEORY EXAMINATION, 2015-16 MATHEMATICS-III

[Time:3 hours] [MaximumMarks:100]

Note: Attempt all questions from each Section as indicated. The symbols have their usual meaning.

Section-A

1. Attempt all parts of this section. Each part carry 2 marks.

 $(2 \times 10 = 20)$

- (a) Show that w=iz is the rotation of the z-plane through an angle $\pi/2$ in the counterclockwise direction.
- (b) Determine and classify all the singularity of

$$\frac{1}{z(z-2)^5} + \frac{1}{(z-2)^z}$$
.

- (c) Define Fourier Transform of a function f(x).
- (d) Find the Z-Transform of $\{(-1)^n\}$.
- (e) Define Probability density function.
- (f) What is Karl Pearson's coefficient of skewness.
- (g) Show that $\nabla \Delta = -\nabla \Delta$.
- (h) Define Bisection method.
- (i) What is cubic spline?
- (j) Find missing value in following table:

Χ	45	50	55	60	64
Υ	3	-	2	-	-2.4

Section-B

Attempt any five questions from this section. $(5 \times 10 = 50)$

2. (a) Show that the function defined by $f(x) = \sqrt{|xy|}$ is not regular at origin, although Cauchy-Riemann equations are satisfied.

(2)

(b) Determine the analytic function f(z) = u + iv, in terms of z, whose $u - v = e^x(\cos y - \sin y)$.

- 3. (a) Find inverse Z-Transform of $\frac{1}{(z-5)^{-3}}$, when z > 5
 - (b) Solve the following difference equation using Ztransform $u_{n+2}+2u_{n+1}+u_n=n, u_0=u_1=0.$
- 4. (a) In a normal distribution, 31% of the items are under 45 and 8% are over 64. Find the mean and standard deviation of the distribution. It is given that if $f(t) = \frac{1}{\sqrt{2\pi}} \int_0^t e^{-\frac{1}{2}x^2} dx$, when of (0.5)=0.19, and f(1.4)=0.42.
 - (b) In a bombing action, there is a 50% chance that any bomb will strike the target. Two direct hits are needed to destory the targey completely. How many bombs are required to be dropped to give a 99% chance of better of completely destroying the target.
- 5. (a) Find to four places of decimal, the smallest root the equation $e^{-x} = \sin x$.
 - (b) From the following table find the value of $e^{0.24}$.

Х	0.1	0.2	0.3	0.4	0.5
Υ	1.10517	1.2214	1.34986	1.49182	1.64872

3800

6. (a) The distance covered an athlete for the 50 meter race is given as:

Time (sec)	0	1	2	3	4	5	6
Distance (meter)	0	2.5	8.5	15.5	24.5	36.5	50

Determine speed of the athlete at t=5 sec correct to two decimal.

- (b) Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using Simpson's 3/8th rule, by taking h=1/6.
- 7. (a) Evaluate using Cauchy intergral formula. $\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz, \text{ where C is the circle } |z| = 4.$
 - (b) Find the Fourier Sine transform of:

$$f(x) = e^{-ax}$$
, for $x \ge 0$ and $a > 0$.

hence show that,

$$\int_0^\infty \frac{a \sin ax}{a^2 + a^2} da = \frac{\pi e^{-ax}}{2}$$

- 8. (a) Six coins are tossed 6400 times. Using the Poisson distribution, determine the probability of getting six heads x times.
 - (b) Using Newton's divided difference formula find a polynomial which takes the values 3, 12, 15, -21 when x has the values 3, 2, 1 and -1 respectively.
- 9. (a) using Milne's method, solve $\frac{dy}{dx} = 1 + y^2$ with initial conditions.

$$y(0)=0$$
, $y(0.2)=0.2027$, $y(0.4)=0.4228$, $y(0.6)=0.6841$, find $y(0.8)$.

(b) Find the value of y (0.6) by Ranga Kutta fourth order method taking h=0.2 for the initial value problem:.

Section-C

- 10. Attempt any two parts of this Section. (15x2=30)
 - (a) Apply calculus of residues to evaluate.

$$\int_0^\infty \frac{x \sin x}{x^2 + a^2} dx, a > 0.$$

3800

(b) Solve the equation.
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial t^2}, x > 0, t > 0$$

Subject to the conditions:

(i)
$$y = 0$$
 when $x = 0$, (ii) $f(x) = \begin{cases} 1, 0 < x < 1 \\ 0, x > 1 \end{cases}$ (iii) $u(x,t)$ is bounded.

- (c) The first four moments about working mean 28.5 of a distribution are 0.294, 7.144, 42.409, and 454.98. Calculate the moments about mean. Also calculate β_1 and β_2 and comment upon the skewness and kurtosis of the distribution.
- (d) Use Gauss-Seidal method to solve the following equations,

$$2x+10y+z = 51$$
$$10x+y+2z = 44$$
$$x+2y+10z = 61$$