

Roll No:

B. TECH. (SEM 1) THEORY EXAMINATION 2020-21 **ENGINEERING PHYSICS**

Time: 3 Hours

Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

$2 \ge 10 = 20$

		N 1	
2.	Attempt any three of the following:	Ŧ	
	SECTION B	60·K	
J.	optical fibre.		
	With the help of a well-labelled diagram, name the components of an	2	5
i.	Differentiate between spontaneous and stimulated emission.	2	5
h.	State Rayleigh criterion of Resolution. Also define resolving power.	2	4
g.	Two independent sources of light cannot produce interference, why?	2	4
	is in motion?		
f.	Why are matter waves associated with a particle generated only when it	2	3
e.	State Wien's displacement law and Rayleigh-Jeans law.	2	3
d.	Show that magnetic monopoles do not exist.	2	2
c.	What is Displacement Current?	2	2
b.	Find the momentum of a photon having energy 1.00×10^{-17} J.	2	1
a.	State Einstein's postulates of Special Theory of Relativity.	2	1
Qno.	Question	Marks	CO

SECTION B

2. Attempt any *three* of the following:

Qno.	Question	Marks	CO
a.	Show that space-time interval between two events remains invariant	10	1
	under Lorentz transformations.		
b.	Find the conduction current density and displacement current density for	10	2
	a solid with conductivity, $\sigma = 10^{-3}$ S/mand $\varepsilon_r = 2.5$. Electric field		
	intensity, $E = 4.5 \times 10^{-6} \sin (10^{9} t)$.		
c.	Find the two lowest permissible energy states for an electron which is	10	3
	confined in a one dimensional infinite potential box of width 3.5×10^{-9} m.		
d.	Calculate the thickness of a soap bubble thin film that will result in	10	4
	constructive interference in reflected light. The film is illuminated with		
	light of wavelength 5000 Å and the refractive index of the film is 1.45.		
e.	What do you understand by attenuation and dispersion in an optical	10	5
	fibre. A communication system uses a 25 km long fibre having a loss of		
	2.5 dB/km. The input power is 2500 μ W, compute the output power.		

SECTION C

3. Attempt any one part of the following:

Qno.	Question	Marks	CO
a.	What do you mean by time dilation? Explain with the help of a mathematical proof. Justify with an experimental evidence to show that time dilation is a real effect.		1

1 | Page

Roll No:

1		Derive Einstein's mass-energy relation and show that relativistic kinetic	10	1
).	energy of a particle is given by:	10	1
		$\begin{bmatrix} c & c \end{bmatrix}^{\perp}$		
		$k = (m - m_0)c^2 = m_0c^2 \left \left(1 - \frac{v^2}{c^2}\right)^2 - 1 \right $		

Attempt any one part of the following: 4.

Qno.	Question	Marks	CO
a.	Write Maxwell's equations in free space. Also show that the electric and magnetic vectors are normal to the direction of propagation of the	10	2
	electromagnetic wave.		
b.	State and deduce Poynting theorem for the flow of energy in an electromagnetic field. Discuss the physical significance of Poynting theorem.	10	2

5. Attempt any one part of the following:

		r		-
Qno.	Question	Marks	CO	1
a.	What is wave function? Derive time independent Schrodinger wave equation.	10	3	3
b.	What is Compton effect? Derive an expression for Compton shift.	10	3	
6.	Attempt any one part of the following:	65 [.]		•
0		Nr 1	00	1

0

Attempt any one part of the following: 6.

		<u>v)</u>	
Qno.	Question	Marks	СО
a.	Describe the formation of Newton's rings in monochromatic light. Show that in reflected light, the diameters of dark rings are proportional to the	10	4
b.	square roots of natural numbers. What is a diffraction grating? Discuss the phenomenon of diffraction due to plane diffraction grating.	10	4
7.	Attempt any <i>one</i> part of the following:		

Attempt any *one* part of the following: 7.

Qno.	Question	Marks	CO
a.	Illustrate the construction and working of He-Ne laser? Discuss important applications of laser.	10	5
b.	Derive expressions for acceptance angle and numerical aperture.	10	5