

Roll No:

B.TECH (SEM I) THEORY EXAMINATION 2020-21 **ENGINEERING MATHEMATICS-I**

Time: 3 Hours

Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

$2 \ge 10 = 20$

		v		
Qno.	Question	Marks	CO	
a.	Prove that the matrix $\frac{1}{\sqrt{3}}\begin{bmatrix} 1 & 1+i\\ 1-i & -1 \end{bmatrix}$ is unitary.	2	1	
b.	State Rank-Nullity Theorem.	2	1	
c.	State Rolle's Theorem.	2	2	
d.	Discuss all the symmetry of the curve $x^2y^2 = x^2 - a^2$	2	2	
e.	If $u = f(y - z, z - x, x - y)$, prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$	2	3	
f.	If $x = e^{v} \sec u, y = e^{v} \tan u$, then evaluate $\frac{\partial(x,y)}{\partial(u,v)}$.	2	3	
g.	Evaluate $\int_0^1 \int_0^{x^2} e^{y/x} dy dx$.	2	4	
h.	Calculate the volume of the solid bounded by the surface $x = 0$, $y = 0$, $x+y+z=1$ and $z=0$.	2	4	S
i.	Show that the vector $\vec{V} = (x+3y)\hat{i} + (y-3z)\hat{j} + (x-2z)\hat{k}$ is solenoidal.	2	5	
j.	State Green's theorem.	2	5	
	SECTION B	ý.	- <u>-</u>	•
2.	Attempt any <i>three</i> of the following:			

SECTION B

2. Attempt any three of the following:

Qno.	Question	Marks	CO
a.	Find the inverse of the matrix $A = \begin{bmatrix} 2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix}$	10	1
b.	If $y = e^{tan^{-1}x}$, prove that. (1 + x ²)y _{n+2} +[(2n+2) x-1) y _{n+1} + n (n+1) y _n =0.	10	2
с.	If $u^{3} + v + w = x + y^{2} + z^{2},$ $u + v^{3} + w = x^{2} + y + z^{2},$ $u + v + w^{3} = x^{2} + y^{2} + z$,Show that: $\frac{\partial(u, v, w)}{\partial(x, y, z)} = \frac{1 - 4xy(xy + yz + zx) + 16xyz}{2 - 3(u^{2} + v^{2} + w^{2}) + 27u^{2}v^{2}w^{2}}$	10	3
d.	Evaluate by changing the variables, $\iint_R (x + y)^2 dx dy$ where R is the region bounded by the parallelogram x+y=0, x+y =2, 3x-2y=0 and 3x-2y = 3.	10	4
e.	Use divergence theorem to evaluate the surface integral $\iint_{S} (xdydz + ydzdx + zdxdy)$ where S is the portion of the plane x+2y+3z=6 which lies in the first octant.	10	5

PAPER ID-311288

SECTION C

Roll No:

3. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	Find non-singular matrices P and Q such that PAQ is normal form. $ \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & 1 & 1 \end{bmatrix} $	10	1
b.	Find the eigen values and the corresponding eigen vectors of the following matrix. $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 2 \end{bmatrix}.$	10	1

4. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	Find the envelope of the family of lines $\frac{x}{a} + \frac{y}{b} = 1$, where <i>a</i> and <i>b</i> are	10	2
	connected by the relation $a^n + b^n = c^n$		
b.	If $y = sin (m sin^{-1}x)$, find the value of y_n at $x = 0$.	10	2

5. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	Divide 24 into three parts such that continued product of first, square of second and cube of third is a maximum.	10	3
	second and cube of third is a maximum.	$\boldsymbol{\Box}$	
b.	If $u = sec^{-1}\left(\frac{x^3 - y^3}{x + y}\right)$, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 2 \cot u$.	10	3
	Also evaluate $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$.		

6. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	Evaluate the following integral by changing the order of integration	10	4
	$\int_0^\infty \int_x^\infty \frac{e^{-y}}{y} dy dx.$		
b.	A triangular thin plate with vertices (0,0),(2,0) and (2,4) has density $\rho =$	10	4
	1 + x + y. Then find:		
	(i) The mass of the plate.		
	(ii) The position of its centre of gravity G.		

7. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	A fluid motion is given by $\vec{v} = (y\sin z - \sin x)\hat{i} + (x\sin z + 2yz)\hat{j} + (xy\cos z + y^2)\hat{k}$. Is the motion irrotational? If so, find the velocity potential.	10	5
b.	Verify Stoke's theorem for the function $\vec{F} = x^2\hat{\imath} + xy\hat{\jmath}$ integrated round the square whose sides are x=0,y=0,x=a,y=a in the plane z=0.	10	5