Printed Pages: 7	1261	NEC-101
(Following Paper ID and Roll No. to be filled in your Answer Book)		
Paper ID : 131101	Roll No.	

B. Tech.

(SEM. I) THEORY EXAMINATION, 2015-16 ELECTRONICS ENGINEERING

[Time:6x3=18 hours] [Total Marks: 100]

Section - A

- 1. Attempt all parts. All parts carry equal marks. Write answer of each part in short. (2x10=20)
 - (a) Explain the effect of temperature on conductivity of a semiconductor.
 - (b) Define CMRR, slew rate of OPAMP.
 - (c) A 320W carrier is simultaneously modulated by two audio waves with modulation % of 45 and 60 respectively. What is the side band power radiated?
 - (d) Define signal. Name various types of signal.
 - (e) Why Si is preferred over Ge for manufacturing of electronics devices.

- (f) In JFET $I_{DSS} = 8mA$, $V_p = -4V$ biased at $V_{GS} = -1.8V$. Determine the value of g_m .
- (g) Define OP-AMP and draw its block diagram.
- (h) Explain FET as Voltage Variable Resistor (VVR).
- (i) Explain with proper reason the use of Emitter Follower.
- (j) Define Depletion layer of PN junction diode.

Section - B

Attempt any five questions from this section: (10x5=50)

 (a) Determine V₀, and draw the output waveform of the given network of fig. 1

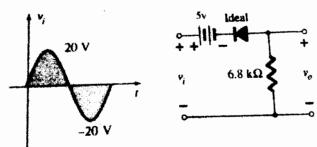


Figure 1

(b) For the network of fig. 2 determine the range of Vi that will maintain V_L at 8V and not exceed the maximum power rating of the Zener diode.

(2)

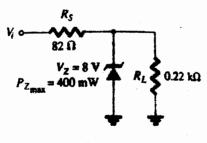
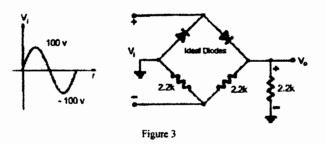
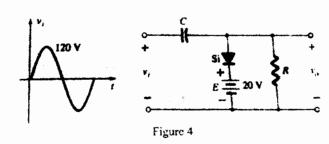
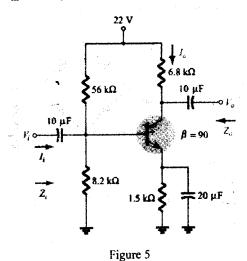




Figure 2

3. (a) Sketch vo, V_{DC} for the network of fig. 3 and determine the peak inverse voltage of each diode.

(b) Sketch V_0 for each network of fig. 4 for the input shown.

42000


NEC-101

42000

(3)

P.T.O.

- Explain with the help of necesary diagram:
 - Inverting Amplifier
 - Integrator
 - Differential amplifier in two mode of operation
- Define Modulation. Derive the relation of total power 5. of AM waves.
- 6. $r_{\bullet}, A_{v}, Z_{in}$ and Z_{0} .

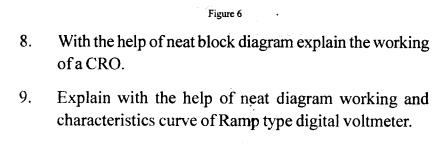
Determine the output voltage of an op-amp for input 7. voltages of $Vi_1 = 200V$ and $Vi_2 = 140V$. The amplifier has a differential gain of Ad = 6000 and the value of CMRR is:

(4)

200 (i)

42000

(ii) 10^{5}


NEC-101

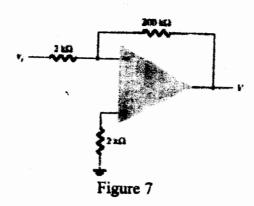
42000

(5)

P.T.O.

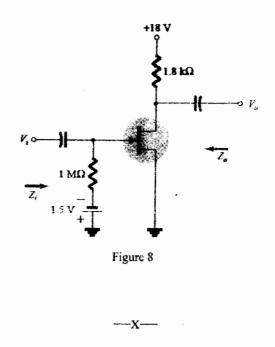
- 4.
- For the voltage divider configuration of fig.5 determine

of fig.6.


Section - C

Find out the voltage V₂ and V₃ of the given network

Attempt any two questions from this section: (15x2=30)


- 10. (a) Explain working and characteristics of Tunnel diode with the help of neat diagram.
 - Describe with the help of circuit diagram working of voltage tripler.
 - (c) Differentiate between Half wave and Full wave rectifiers.

- 11. (a) Explain construction and working and characteristics of P channel Enhancement MOSFET.
 - (b) Draw and explain the input and output characteristics of Common Emitter configuration.
 - (c) For an input of $V_1 = 50 \text{mV}$ in the maximum of fig. 7, determine the maximum frequency that may be used. The op-amp slew rate SR = 0.4 V/s.

- 12. Explain the need of modulation in communication system.
 - (a) A 460 watt carrier is modulated to a depth of 65 percent. Calculate the total power in the modulated wave.

(b) Determine Zi, Zo and Δv for the network of fig. 8 If $v_{oss} = 12 \text{ mA}$, $V_p = -6 \text{ V}$, and $V_{os} = 40 \text{ micro}$ Siemen.

